The double circulatory system of blood flow refers to the separate systems of pulmonary circulation and the systemic circulation in amphibians, birds and mammals, including humans. Pulmonary Circulation
The pulmonary circulation is the portion of the cardiovascular system which carries oxygen-poor (deoxygenated) blood away from the heart, to the lungs, and returns oxygenated blood back to the heart. As shown in Figure, deoxygenated blood from the body leaves the right ventricle through the pulmonary arteries, which carry the blood to each lung. The pulmonary arteries are the only arteries that carry deoxygenated blood. In the lungs, red blood cells release carbon dioxide and pick up oxygen during respiration. The oxygenated blood then leaves the lungs through the pulmonary veins, which return it to the left side of the heart, and complete the pulmonary cycle. In the following scheme of the general body circulation, pulmonary circulation is in the right side and the systemic circulation is on the left side.
Systemic Circulation
The systemic circulation is the portion of the cardiovascular system which carries oxygenated blood away from the heart, to the body, and returns deoxygenated blood back to the heart. Oxygenated blood from the lungs leaves the left ventricle through the aorta, from where it is distributed to the body's organs and tissues, which absorb the oxygen, through a complex network of arteries and capillaries. The deoxygenated blood is then collected by veins and then into the inferior and superior venae cavae, which return it to the right heart, completing the systemic cycle. The blood is then re-oxygenated through the pulmonary circulation before returning again to the systemic circulation.
Just like every other organ in the body, the heart needs its own blood supply, which it gets through the coronary arteries that branch directly from the aorta, just above the heart. They deliver oxygen-rich blood to the heart
The pulmonary circulation is the portion of the cardiovascular system which carries oxygen-poor (deoxygenated) blood away from the heart, to the lungs, and returns oxygenated blood back to the heart. As shown in Figure, deoxygenated blood from the body leaves the right ventricle through the pulmonary arteries, which carry the blood to each lung. The pulmonary arteries are the only arteries that carry deoxygenated blood. In the lungs, red blood cells release carbon dioxide and pick up oxygen during respiration. The oxygenated blood then leaves the lungs through the pulmonary veins, which return it to the left side of the heart, and complete the pulmonary cycle. In the following scheme of the general body circulation, pulmonary circulation is in the right side and the systemic circulation is on the left side.
Systemic Circulation
The systemic circulation is the portion of the cardiovascular system which carries oxygenated blood away from the heart, to the body, and returns deoxygenated blood back to the heart. Oxygenated blood from the lungs leaves the left ventricle through the aorta, from where it is distributed to the body's organs and tissues, which absorb the oxygen, through a complex network of arteries and capillaries. The deoxygenated blood is then collected by veins and then into the inferior and superior venae cavae, which return it to the right heart, completing the systemic cycle. The blood is then re-oxygenated through the pulmonary circulation before returning again to the systemic circulation.
Pulmonary Circulation | Systemic Circulation |
It is a shorter circulation. | It is a larger circulation. The circulation is between heart and remaining parts of the body except lungs. Blood is pumped by left part of the heart and received by the right part. It pumps oxygenated blood to different parts of the body. It brings back deoxygenated blood to the heart. |
Just like every other organ in the body, the heart needs its own blood supply, which it gets through the coronary arteries that branch directly from the aorta, just above the heart. They deliver oxygen-rich blood to the heart
No hay comentarios:
Publicar un comentario